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ABSTRACT 

Terrain Aided Navigation (TAN) is a technique which estimates the real position of a moving vehicle by 
comparing the measured terrain profile under the vehicle with a stored elevation map. TAN has been 
operational especially for unmanned air vehicles since 1960’s and is used in order to aid an Inertial 
Navigation System (INS) by providing position fixes. Especially, if other sources for position aids, like 
Global Positioning System (GPS), are not available, TAN can provide reliable position information, 
especially in low level flights over significant terrain and increase the accuracy of the INS. Until now, 
several TAN techniques have been developed and tested. These fall into two algorithmic categories: 

1. Batch algorithms where post navigation solutions are performed. For example, TERCOM. 

2. Recursive algorithms where real-time navigation solutions are performed. For example, SITAN, 
VATAN, etc. 

Moreover, TAN algorithms are applied for both acquisition and tracking purposes. In acquisition mode of 
operation, large initial position errors of the INS are fixed using the TAN algorithm, generally TERCOM. 
On the other hand, in tracking mode of operation, relatively small position errors of INS which are 
determined by the grid size of the elevation data used are reduced in real-time by using recursive 
algorithms, like SITAN. 

In this work, Track Splitting Filtering (TSF) which was previously developed for radar tracking 
algorithms is implemented as a new TAN algorithm for real-time navigation solutions. The implemented 
recursive algorithm can be used for both acquisition and tracking modes of operation. Implementation of 
the TSF algorithm for acquisition and tracking modes of operation is shown with simulations. In addition, 
it is shown that results of the acquisition mode are improved and probability of false position fixes 
decrease compared with TERCOM using Monte Carlo simulations. 

1.0 INTRODUCTION 

Terrain Aided Navigation (TAN) is a technique to estimate the position of a moving vehicle by comparing 
the measured terrain profile under the vehicle to a stored elevation map and it has been operational 
especially for unmanned vehicles since 1960’s. TAN provides position fixes, which can be used to aid an 
integrated navigation system. Especially, if other sources for position aids, like the Global Positioning 
System (GPS), are not available, TAN can provide reliable position information in low level flights over 
significant terrain. 

TAN consists of sensing a terrain elevation profile beneath an air vehicle and correlating the profile with 
stored digital terrain elevation data (DTED) to produce an estimate of vehicle position. An INS, usually 
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with barometric altimeter aiding, provides the approximate trajectory. TAN systems provide three 
dimensional position updates to the navigation system by estimating INS trajectory errors. Radar or laser 
altimeter measures ground clearance and the DTED gives terrain elevation above mean sea level (MSL). 
Implementation requires an INS, an altimeter, DTED, and a flight computer for executing the TAN 
algorithm. In Figure 1, an illustration is given for TAN measurement process [1]. 

 

Figure 1: TAN Measurements [1] 

TAN techniques fall into two algorithmic categories; batch algorithms where post navigation solutions are 
performed and recursive algorithms where real-time navigation solutions are performed. Moreover, TAN 
algorithms are applied for both acquisition and tracking purposes. In acquisition mode of operation, large 
initial position errors of the INS are fixed using the TAN algorithm. On the other hand, in tracking mode 
of operation, relatively small position errors of INS which are determined by the grid size of the elevation 
data used are reduced in real-time by using recursive algorithms [2]. 

The most widely known form of TAN which uses batch algorithm is TERCOM. TERCOM is a form of 
correlation guidance based on a comparison between the measured and the pre-stored features of the 
profile of the ground (i.e., terrain) over which a missile or aircraft is flying. Generally, terrain height forms 
the basis of this comparison [3]. Actually, TERCOM is a maximum likelihood estimator which uses only 
terrain height information for determining the vehicle’s actual position. On the other hand, the major 
recursive TAN algorithm found in literature is SITAN proposed by Hostetler and Andreas [4]. SITAN 
uses an extended Kalman Filter (EKF) and a local terrain linearization technique to implement a recursive 
algorithm. This algorithm operates on individual terrain elevation measurements as they become available 
and for the entire duration of the mission [2]. In order to perform real-time navigation solutions using 
TAN, kinematical behavior of the system should be modeled. However, batch algorithms use only height 
measurements and related DTED unlike recursive TAN algorithms where kinematical system models are 
used for real-time navigation solutions. 

The modern need for tracking algorithms began with the development of radar during World War II. A 
near-optimal method for addressing a large class of tracking problems was developed in 1960 by R.E. 
Kalman. His approach, referred to as Kalman filtering, involves the recursive fusion of noisy 
measurements to produce an accurate estimate of the state of a system of interest. Kalman’s work had a 
dramatic impact on the field of target tracking in particular and data fusion since mid-1960’s [5]. Modern 
radar tracking algorithms generally deal with complex problems of tracking like clutter or multiple targets. 
In tracking targets with less-than-unity probability of detection in the presence of false alarms (clutter), 
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data association, deciding which of the received multiple measurements to use to update each track is 
crucial. Data association becomes more difficult with multiple targets where the tracks compete for 
measurements. Here, in addition to a track validating multiple measurements as in the single target case, a 
measurement itself can be validated by multiple tracks. Several algorithms are developed to handle this 
contention like track splitting, multiple hypothesis tracking (MHT), probabilistic data association (PDA) 
and joint probabilistic data association (JPDA) [5]. 

TAN is a nonlinear estimation problem; since, terrain height information is used for navigation solution. 
Actually, TAN can be considered as a data association problem, especially for the acquisition operation 
mode where INS position errors are considerably large. From the literature survey of Quintang, et al [6] 
and Dezert [7] where Probabilistic Data Association (PDA) filter is used for navigation applications, it has 
been thought that modern data association algorithms can be implemented for real-time TAN algorithms. 
In this paper, Track Splitting Filtering (TSF) is implemented as a new TAN algorithm for real-time 
navigation solutions. The implemented recursive algorithm can be used for both acquisition and tracking 
modes of operation. Implementation of the TSF algorithm for acquisition and tracking modes of operation 
is shown with simulations. In addition, it is shown that results of the acquisition mode are improved and 
probability of false position fixes decrease compared with TERCOM using Monte Carlo simulations. 

2.0 THEORY 

2.1 Multiple Hypothesis Tracking (MHT) and Track Splitting Filtering (TSF) 
In classical multiple-target tracking, the problem is divided into two steps, association and estimation. 
Step 1 associates contacts with targets. Step 2 uses the contacts associated with each target to produce an 
estimate of that target’s state. Complications arise when there is more than one reasonable way to 
associate contacts with targets. The classical approach to this problem is to form association hypotheses 
and to use MHT. In this approach, alternative hypotheses are formed to explain the source of the 
observations. Each hypothesis assigns observations to targets or false alarms. For each hypothesis, MHT 
computes the probability that it is correct. This is also the probability that the target state estimates that 
result from this hypothesis are correct. Most MHT algorithms display only the estimates of target state 
associated with the highest probability hypothesis [8]. 

The original MHT method, denoted Reid’s algorithm, was first presented by Reid [9]. There are two basic 
approaches to MHT implementation. The first (hypothesis-oriented) approach follows the original work of 
Reid [9]. It maintains the hypothesis structure from scan to scan and continually expands and cuts back 
(prunes) the hypotheses as new data are received. At each scan, a set of hypotheses will be carried over 
from the previous scan and composed of one or more tracks that are compatible with all other tracks in the 
hypothesis. Compatible tracks are defined to be tracks that do not share any common observations. Then, 
on the receipt of new data, each hypothesis is expanded into a set of new hypotheses by considering all 
observation-to-track assignments for the tracks within the hypothesis. Again, as new hypotheses are 
formed, the compatibility constraint for tracks within a hypothesis is maintained [10]. 

An alternative (track-oriented) approach does not maintain hypotheses from scan to scan. The tracks 
formed on each scan are reformed into hypotheses and the tracks that survive pruning are predicted to the 
next scan where the process continues [10]. 

In Figure 2, the operations of MHT that are required by both implementation methods are summarized. 
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Figure 2: MHT Logic Overview [10] 

TSF is proposed by Smith and Buechler [11] and older than the original MHT method presented by Reid 
[9]. In TSF, a tree of hypotheses is kept for each target individually, and a maximum likelihood criterion is 
used to prune the tree. On the other hand, Reid’s MHT constructs a tree of all possible hypotheses, 
including all possible new track initiations at every time step. Reid discusses a number of strategies to 
prune the tree in order to achieve reasonable computation times. In the paper, TSF is implemented for 
TAN due to INS error model characteristics. Since, horizontal INS error bound is estimated for the air 
vehicle and errors do not change rapidly, implementation of TSF for TAN became sufficient for 
navigation solutions. 

2.2 Implementation of TSF to TAN 
TSF is a recursive branching algorithm for multiple-object discrimination and tracking consists of a bank 
of parallel filters of the Kalman form, each of which estimates a trajectory associated with a certain 
selected measurement sequence. The measurement sequences processed by the algorithm are restricted to 
a tractable number by combining similar trajectory estimates, by excluding unlikely measurement/ state 
associations, and by deleting unlikely trajectory estimates. The measurement sequence selection is 
accomplished by threshold tests based on the innovations sequence and state estimates of each filter [11]. 

Implementation of TSF to TAN is done using standard TSF procedure [12] considering INS error 
characteristics of the air vehicle as follows: 

1. A predicted observation and validation gate are computed. 

• Measurement gate is taken as the 3σ horizontal error bound of the INS and the invalid 
possibilities for all height differences ( )ih kδ  used in measurement gate, where i  denotes the 
index of the position in the gate, are discarded such that all height differences satisfy: 

 ( ) 1 22 2( )
INSi h radarh kδ γ σ σ⎡ ⎤≤ ⋅ +⎣ ⎦  (1)

where, γ  is the gate threshold taken as 16 (4σ vertical error bound) considering 99.9989% of 
the measurements to be in the gate and 2σ  are the variances of INS height (i.e. barometric 
altimeter) and radar altimeter. In other words, impossible height difference measurements are 
discarded from the navigation solutions. 

Height differences ( )ih kδ  are defined as the difference between the measured and estimated 
height clearances for all grid positions in the defined region. Considering TAN measurements 
given in Figure 3, single height difference is defined as: 
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 ( ) ( ) ( )meas esth k C k C kδ = −  (2)

 

Figure 3: TAN Measurement Process 

2. All validated observations are associated. 

• Every grid position (i.e. index) that satisfy validated height differences in the 3σ horizontal 
error bound of the INS is considered to be one of the possible navigation solutions. 

3. The track is updated separately with each validated hypothesis and the likelihood of the each 
entire track sequence is computed. 

• Navigation solution is assumed to be one of the grid index followed by some of the tracks in 
the 3σ horizontal error bound of the INS. According to the index of the grid position, there 
exist “n x n” possible tracks (i.e. hypothesis) for each time step where “n x n” denotes the 
batch size of the DTED considered. At the initial time step, there exist “n x n” possible tracks 
from INS position grid to all possible grid positions as shown in Figure 4. The modified log-
likelihood of the each possible track sequence is computed as follows: 

 
,
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( )( ) 2 log ( ) ( ) ( )       for   1..." "
i i

k l k
Ti

i M M
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k v j S j v j i n n
c

λ −
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⎡ ⎤Λ Θ
≡ − ⋅ = ⋅ ⋅ = ×⎢ ⎥

⎣ ⎦
∑  (3)

where, iΛ  is the likelihood function, kc  is constant, 
iMv  is the innovation between tracked 

and measured height differences and S  is the innovation covariance matrix. 

4. Some pruning of the hypothesis tree takes place. 

• Number of possible tracks is limited with the positions in the 3σ horizontal error bound of the 
INS considering INS error characteristics. In order to reduce the number of hypotheses, 
definite number of tracks with minimum likelihoods is selected for the navigation solution. In 
other words, best “M” tracks with minimum likelihoods of the existing “n x n” possible tracks 
are selected for the navigation solution. Hence, hypotheses are pruned. 

5. Each track hypothesis is now independently predicted forward to the next time-step. 

• Navigation solution is found for each possible track using standard Kalman filter equations as 
given in the reference papers for MHT/ TSF procedure. Using a definite number of minimum 
likelihood values of the entire track sequences, navigation solution is achieved. This is done 
by computing modified log-likelihood function recursively for each formed new track and 
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selecting the track with minimum likelihood value as follows: 

 1( 1) ( ) ( 1) ( 1) ( 1)          for 1... ,  1..." "
ij ij

T
ij ij M Mk k v k S k v k i M j n nλ λ −+ = + + ⋅ + ⋅ + = = ×  (4)

where, k  is the time step. 

• In order to decrease the effects of the old measurements, modified log-likelihood function 
defined in equation (3) can be used by a weighting factor WFK  as follows: 

 1( 1) ( ) ( 1) ( 1) ( 1)     for 1... ,  1..." "
ij ij

T
ij WF ij M Mk K k v k S k v k i M j n nλ λ −+ = ⋅ + + ⋅ + ⋅ + = = × (5)

 

 

Figure 4: TSF Track Formation and Pruning 

6. Procedure defined at the previous steps is done recursively in order to obtain navigation solution 
in real-time. 

3.0 SIMULATIONS 

In order to perform simulations, first trajectory and INS error models are formed. Then, DTED height 
model is prepared. Next, TAN models are formed which include SITAN, TERCOM and TSF in order to 
compare the results of the implemented TSF algorithm for both tracking and acquisition modes of 
operation. Finally, the overall architecture is formed in order to perform simulations for position errors 
along east and north directions of the vehicle motion. 

Simulation architecture is shown in Figure 5. Loosely coupled integration structure is used where INS is 
not updated at each TAN correction step but updated at a greater period. This is done in order not to 
influence INS results from possible fault corrected TAN solutions. 

3.1. Simulation Model Development 
For the simulations, the motion of the vehicle is modeled considering the mid-course flight of an air 
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vehicle with constant heading and velocity motion at constant altitude. Since the height terms will be taken 
from the DTED database according to vehicle’s latitude and longitude (i.e. horizontal positions), height is 
not considered in the vehicle’s state. 

 

Figure 5: Simulation Architecture 

Trajectory model of the vehicle considering continuous states can be modeled as follows: 

( ) ( ) ( )traj trajx t F t x t= ⋅  (6)

( ) ; ; ; ; ;
T

traj traj traj traj traj traj trajx t rN rE h vN vE vD⎡ ⎤= ⎣ ⎦  (7)

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

( )
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

F t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (8)

where, trajrN , trajrE  are northward and eastward positions, trajh  is the altitude and trajvN , trajvE , trajvD  are 
the north, east and down velocities of the vehicle. Here, north and east velocities are assumed to be 
constant considering constant velocity and heading flight. Down velocity is also assumed to be zero 
considering level flight. 

INS error model used in the simulations is taken from Bar-Itzhack and Berman [13] where ψ -angle 
approach is used and error equations are derived for Cartesian coordinates. Hence, INS error model can be 
written in discrete state-space form as follows: 

( 1) ( ) ( ) ( )x k k x k w kδ δ+ = Φ ⋅ +  (9)

[ ]( ) ; ; ; ; Tx k rN rE h vN vEδ δ δ δ δ δ=  (10)
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where, δ  denotes the error states of positions, altitude and velocities. Here ( )w k  is the INS error state 
white noises derived from INS error model including INS sensor and mechanization errors. 

For DTED height model, height of the vehicle is determined from the related DTED maps according to the 
related latitude and longitude of the vehicle. Measurement height differences are taken for the TERCOM, 
SITAN, and TSF models by adding INS white noises as system noise and radar white noises as 
measurement noise considering Figure 3. Then, height difference given in equation (2) used in DTED 
model becomes: 

[ ]
INS Height Model Radar Height Measurement Model

( ) ( ( ), ( )) ( ) ( ( ), ( )) ( )DTED INS INS INS DTED traj traj radarh k h k k w k h k k w kδ µ λ µ λ⎡ ⎤= + − +⎣ ⎦  (11)

where, µ  is the longitude and λ  is the latitude of the related INS and trajectory positions and w  is the 
white noise term of the INS and radar height measurements. 

SITAN and TERCOM models are taken considering the original models found in the literature. For 
SITAN, terrain slopes are derived considering the gradients of the height values of the related DTED files. 
Other equations are taken from Hostetler and Andreas [4] in order to form SITAN model for tracking 
mode. For TERCOM, maximum absolute difference (MAD) process [3] is used for correlation in 
acquisition mode. 

For TSF model, system is taken as INS error model and standard Kalman filter equations are used as 
discussed in the previous section. These equations are summarized as follows: 

TSF Measurement Model: 

( ) ( ) ( ) ( )i m i measz k H k x k w kδ= ⋅ +  (12)

where, [ ]( ) 0 0 1 0 0mH k = : Height measurement matrix, 

 2( ) (0, )meas radarw k N σ= : Measurement white noise, 

 ( ) { ( ) ( ) }T
meas measR k Cov w k w k= : Measurement noise covariance matrix. 

State Estimate Propagation (for each track): 

ˆ ˆ( | 1) ( 1) ( 1| 1)x k k k x k kδ δ− = Φ − ⋅ − −  (13)

Error Covariance Propagation (for each track): 

( | 1) ( 1) ( 1| 1) ( 1) ( 1)TP k k k P k k k Q k− = Φ − ⋅ − − ⋅Φ − + −  (14)

TSF Gain Matrix (for each track): 

1( ) ( | 1) ( ) ( )T
PK k P k k H k S k −= − ⋅ ⋅  (15)

where, 
1 0 0 0 0

( ) 0 1 0 0 0
0 0 1 0 0

PH k
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

: TSF measurement matrix, 

 ( ) ( ) ( | 1) ( ) ( )T
P PS k H k P k k H k R k= ⋅ − ⋅ + : Innovation covariance matrix. 
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State Estimate Update (for each track): 

ˆ ˆ ˆ ˆ( | ) ( | 1) ( ) ( ) ( | 1) ( ) ( ) ( | 1)P p px k k x k k K k v k x k k K k z k z k kδ δ δ ⎡ ⎤= − + ⋅ = − + ⋅ − −⎣ ⎦  (16)

Error Covariance Update (for each track): 

( | ) [ ( ) ( )] ( | 1)P k k I K k H k P k k= − ⋅ ⋅ −  (17)

Then, TSF procedure given in section 2.2 is applied for selecting best track with minimum likelihood. 

3.2. Simulation Results 
Simulations are performed for two modes of operation of the TAN algorithms: 

• Tracking mode, where SITAN single filter and TSF are compared with Monte Carlo simulations along 
the trajectory; 

• Acquisition mode, where TERCOM and TSF are compared with Monte Carlo simulations for the 
position update at a defined time. 

First, simulation area is selected. For TAN algorithm applications, roughness and uniqueness of the 
selected terrain is very critical. It should be noted that the TAN algorithms will not work over all types of 
terrain. Good terrain must be more than just rough, it must be unique. In order to select terrain, two 
parameters are used; Tσ , the standard deviation of the terrain elevation samples which define terrain 
roughness and Zσ , the standard deviation of the point-to-point changes in terrain elevation which define 
terrain uniqueness [3]. 

Terrain height profile and parameters used in the tracking mode simulations are given in Figure 6 and 
Table 1. Monte Carlo simulations of 100 runs are performed. Horizontal position errors and their RMS 
values are plotted for INS, SITAN and TSF for a single terrain. Simulation results are given in Figure 7, 
Figure 8 and Figure 9. 

 

 

Figure 6: Terrain Height Profile for 
Tracking Mode 

Table 1: Simulation Parameters for 
Tracking Mode 

Initial INS position deviation (one axis) 60 m 
Initial vehicle velocity 240 m/s 
INS Quality (INS Class) 10 nmi/hr 
Initial INS east velocity bias 0.5 m/s 
Initial INS north velocity bias 0.5 m/s 
INS horizontal position standard deviation  9 m 
INS altitude position standard deviation 3 m 
Radar altimeter standard deviation 3 m 
INS velocity standard deviation 0.05 m/s 
DTED Accuracy DTED 1 
DTED Grid Size (for PDAF and TSF) 3x3 
Mean height of the terrain 1093 m 

Tσ  of the terrain 77.9 m 

Zσ  of the terrain 16.2 m 
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Figure 7: Northward Position Errors 
vs. Time 

 

Figure 8: Eastward Position Errors 
vs. Time

 

Figure 9: Total Position RMS Error vs. Time 

As it can be seen from the results, TSF total RMS errors are better than SITAN results for tracking mode 
of operation. It should be noted that INS is not updated during the simulation period. However, for real-
time operations, update will be performed in small time periods. 

For acquisition mode of operation, simulations are performed with greater DTED batch sizes of 11 x 11 
for TSF algorithm. In the acquisition mode simulations, same parameters given in Table 1 are used except 
initial INS position error and INS quality. Since, batch process is used for TERCOM, INS quality is taken 
as 1 nmi/hr class as in real TERCOM applications. Moreover, large initial position errors are used for 
simulations. Monte Carlo simulations of 100 runs are performed for each terrain. Percentage of false fixes 
and total horizontal errors for TERCOM and TSF are tabulated with initial INS horizontal errors. Standard 
deviations of total horizontal errors are also calculated considering Monte Carlo simulations. Six different 
terrains are used for simulations. Each terrain has different roughness and uniqueness parameters. 
Simulation results and terrain parameters for acquisition mode are given in Table 2. 
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Table 2: Terrain Parameters and Simulation Results for Acquisition Mode 

Percentage of False Fix [%] Total Average Horizontal 
Error and Standard Deviation 

(after position fix) [m] Total Position Error 
(< 120 m) 

Total Position Error 
(< 250 m) 

Terrain 
No. 

Tσ  
[m] 

Zσ  
[m] 

Initial Total 
Horizontal INS 

Error and 
Standard 

Deviation [m] TERCOM TSF TERCOM TSF TERCOM TSF 

1 32.4 1.7 456.3 / 57.9 62.1 / 27.0 63.3 / 27.2 30 22 12 6 

2 25.7 1.6 453.7 / 59.8 66.0 / 27.9 64.8 / 29.0 43 44 22 9 

3 157.4 19.5 444.9 / 50.2 41.0 / 19.4 49.2 / 27.9 5 3 5 0 

4 176.2 6.5 446.9 / 53.7 42.2 / 19.1 44.8 / 20.8 6 2 6 2 

5 736.4 21.6 449.6 / 50.3 58.8 / 32.0 55.8 / 27.8 16 4 11 0 

6 308.7 21.1 451.9 / 54.0 39.4 / 18.4 42.5 / 21.4 11 5 11 2 

 

As it can be seen from the results, percentage of false fix decreases considerably with the implemented 
TSF algorithm. Total average errors and standard deviations are calculated for TERCOM and TSF 
considering true position fixes. Position error results are similar compared with TERCOM. On the other 
hand, error values of most of the false fix positions are less than INS errors for TSF which is the main 
advantage of the proposed algorithm. 

4.0 DISCUSSION AND CONCLUSION 

In this paper, a radar tracking algorithm is implemented for TAN. Several conclusions are achieved from 
the implemented TSF algorithm. The advantages of the new algorithm proposed can be summarized as 
follows: 

• Real-time TAN solution can be obtained with a single TSF structure. However, TSF operations are 
more complex than SITAN. On the other hand, in TSF, more than one track is selected in order to 
determine navigation solution. Hence, probability of false fix decreases unlike TERCOM. 

• Real-time TAN solution is obtained by considering horizontal position errors of DTED used in real-
time TSF. Hence, horizontal position states are added to the Kalman filters used in TSF. 

• Application of the TSF is simple and the filter is linear since INS error model is used. 

• Batch size of the DTED area concerned can be changed independent of the model used. Both larger 
DTED areas for acquisition mode or smaller DTED areas for tracking mode of operation can be 
selected using the same TSF structure. 

• Results of the filters are good for both modes of operation. For tracking mode, position RMS error is 
less than 50 meters for each axis. 

• TSF can be considered as a real-time TERCOM process for large position errors, i.e. large DTED 
batch size. Possibility of false position fixes decrease with TSF when compared with TERCOM. 
Moreover, required DTED batch and correlation time for correlation process is also decreased. On the 
other hand, for small position errors, decreasing the weighting factor of the past measurements for 
TSF, better real-time solutions can be obtained. 

The main disadvantage of the proposed algorithm is calculation time. Due to track formation process in 
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TSF, number of calculations increase excessively. Actually, number of tracks is kept constant in TSF with 
selecting constant number of tracks for each time step. However, number of calculations is still 
considerable. Actually, with the use of new processors in navigation computers, TSF algorithm can be 
used in real-time applications. 
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